ON-SITE & REAL TIME THZ MONITORING OF GASEOUS EMISSION FROM A WASTE RECOVERY CENTER J. DECKER¹, F. HINDLE¹, E. FERTEIN¹, N. HOUZEL¹, <u>G. MOURET¹</u>, F. CAZIER², J. DUMONT³, <u>A. CUISSET¹</u>

¹: Université du Littoral Côte d'Opale, UR4493, LPCA, Laboratoire de Physico-Chimie de l'Atmosphère, F-59140 Dunkerque; ³ PAPREC ENERGIES 59, Paprec, Dunkerque, France

THE TERAWASTE PROJECT

The TeraWaste project explores the potential of highresolution TeraHertz (THz) spectroscopy for the monitoring of gaseous emissions in industrial site, by developing an on-site diagnostic unit. The selectivity as well as the ability to detect in realistic scattering media of the THz radiation without any calibration steps make it an alternative of choice to current solutions (IR spectroscopy & standard chemical methods). A multispecies time-resolved mapping and quantification, extended to all polar compounds absorbing submillimeter waves of industrial gaseous emissions, will allow the operator to better control pollutants emission in the combustion process and future normative evolutions.

THE THZ SPECTROMETER

Band 4/600 GHz extension performance

requency (MHz

—— high gain

Lock-in

, ──→ exhaust

Gas

← .

Reconfigurable multiplication chain. 60 - 620 GHz	
Electronic THz devices are now compact and robust and can	0,00005 -
go outside the laboratory	0,00004 –
<image/>	0,00005 - 0,0000
pipe Sampling rod FIR spectrometer Unit Cooling Unit Portable Gaz Analyzer Portable Gaz Analyzer Dot: Cross-Flow Modulation ChemilumInescence Detection Method (CLA) Cool: Cross-Flow Modulation Non-Dispersive Infrared Absorption Method (NDIA)	0,00004 0,00003 0,00002 0,000000 0,0000000 0,0000000 0,000000 0,00000 0,00000 0,0000

THE WASTE RECOVERY CENTER

Continuous Emission Monitoring System 1 before / 2 after gas treatment process

BREF Incineration 12 November 2019				
Parameter	BAT in mg/Nm3	BAT in ppm	Averaging period	
Dust	< 2 - 5		Daily	
Cs+Tl	0.005 - 0.02		Over the	
Sb+As+Pb+Cr+Cu+Mn+Ni+V	0.01 - 0.3		sampling period	
НСІ	< 2 - 8	< 1 - 5		
HF	< 1	< 2	Daily	
SO ₂	< 5 - 40	< 2 - 14		
NO _x	< 50 - 150	< 37 - 112 / < 25 - 75	Daily	
со	< 10 - 50	< 8 - 40		
NH ₃	< 2 - 10	< 2 -8		
VOC _T	< 3 - 10	< 4 - 14		
PCDD/PCDF	< 0.01 - 0.08		Over the	
PCDD/PCDF + PCB dioxin type	< 0.01 - 0.08		sampling period	

Innovation Recherche Environnemen

-2x10⁻⁷ -

3x10⁻⁷ 🕂

Non-Saturation

(carboxen)

VOCs MEASUREMENT USING PRE-CONCENTRATION

Principle of pre-concentration : adsorption & thermal desorption

Adsorption/desorption automated with a 6-ways valve

A certified AMS requires: 1 measurement/compound/min. 24h/24!