ROVIBRATIONAL SPECTROSCOPY OF TRANS AND CIS CONFORMERS OF 2-FURFURAL FROM HIGH RESOLUTION FOURIER TRANSFORM AND QCL INFRARED MEASUREMENTS P. ASSELIN¹, S. CHAWANANON¹, J. A. CLAUS², M. GOUBET², A. ROUCOU³, R. GEORGES⁴, J. SOBCZUK⁵, O. PIRALI⁶, C. BRACQUART³, A. CUISSET³

1 : Sorbonne Université, MONARIS, CNRS, UMR8233, 4 PI Jussieu, F-75005 Paris, France; 2 : Univ. Lille, CNRS, UMR8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France;

3 : Université du Littoral Côte d'Opale, UR4493, LPCA, Laboratoire de Physico-Chimie de l'Atmosphère, F-59140 Dunkerque, France; 4 : Université de Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000, Rennes, France; 5: Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian Université de Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France;

1. Introduction

The ortho-isomer **2-furfural** $(C_5H_4O_2)$ is a primary atmospheric pollutant produces by the combustion of cellulose and hemicellulose contained in the biomass.

This molecule is involved in oxidation processes leading to the formation of **secondary organic aerosols**. Its contribution to the radiative forcing, poorly known, fully justifies to monitor 2-FF directly in the atmosphere or in atmospheric simulation chambers to characterize its reactivity.

This study presents a jet-cooled rovibrational study of trans and cis conformers of 2-FF in the Mid-IR.

3. State-of-the-art

Far-IR , Mid-IR and Raman studies [1,2] : relative stability trans/cis = 3 at 300 K (286(24) cm⁻¹) and a conformational barrier height 3252(20) cm⁻¹.

- no splitting due to internal rotation
- no relaxation expected in the jet

Microwave and mm-wave studies [3] : molecular parameters in the ground state and in low-frequency vibrational modes (< 300 cm⁻¹).

Fig 1: torsional potential energy surface from FIR spectral data

[1] Little, T. S., Qiu, et al. (1989). Spectrochim. Acta A-M, 45(8), 789-794. [2] Adámek, P., et al. (1973). J. Mol. Spectrosc., 47(2), 252-267. [3] Motiyenko, R. A., et al.(2006). J. Mol. Spectrosc., 240(1), 93-101.

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

SORBONNE UNIVERSITÉ

a supersonic jet coupled to a high-resolution Fourier transform spectrometer (JET-AILES) a pulsed jet coupled to a mid-IR tunable quantum cascade laser spectrometer (SPIRALES).

Reliable excited state molecular parameters for trans- and cis-2-FF vibrational bands were derived from fitting 11,376 and 3,355 lines distributed over 8 and 3 vibrational states with a root-mean-square of 12 MHz, respectively. Vibrational assignments were also performed based on anharmonic calculations.

4. Rovibrational spectral analysis

SURCHROTRON

ulco

The room temperature middle resolution spectrum of 2-FF available in the HITRAN database [4] was reconstructed with a deviation <10% by extrapolating the high-resolution analyses and adding hot band in our simulation (40-63% of the fund. band).

In terms of **perspectives**, a reliable anharmonic force field, capable of providing accurate anharmonic coefficients $\chi_{i,i}$, is necessary in order to assign hot band patterns and enhance the reconstruction of the roomtemperature rovibrational spectrum for such medium-sized VOCs, where the rovibrational structure cannot be resolved at room temperature.

[4] Johnson, T. J., Profeta, L. T., Sams, et al. (2010). Vib. Spectrosc., 53(1), 97-102.

5. Cross sections

wavenumber	calculated from ou	ır simulations ^a	calculated from HITRAN ^a
	without hot bands	with hot bands	
cm^{-1}	cm.molecule ⁻¹	cm.molecule ⁻¹	$cm.molecule^{-1}$
700 - 795	1.26E-17	2.23E-17	2.22E-17
980 - 1050	3.19E-18	5.89E-18	6.15E-18
1450 - 1550	0.45E-17	0.87E-17	1.17E-17
1550 - 1610	2.55E-18	7.67E-18	8.53E-18
1660 - 1800	1.29E-17	3.48E-17	3.75E-17
^a Results obtained f	rom integration of the cross s	ections given in cm ² .m	olecule ⁻¹
$(v_{17})_{c}^{*}, (v_{23})_{t}$	$(v_{14}), (v_{14}), (v_{7}), (v_{7})$	$(v_6)_{t}, (v_6)_{t}$	HITRAN databa $(v_5)_t, (v_5)_c$ $(v_{17}+v_{15})_t$ $(v_{18}+v_{19})_t$
why have			