Microwave and millimeter-wave rotational spectroscopy of 3-methylcatechol

A. Roucou¹, J. Bruckhuisen¹, M. Roca¹, C. Bracquart¹, R. Blanchart¹, X. Wang², Q. Gou², A. Cuisset¹, <u>G. Dhont¹</u>

¹Université du Littoral Côte d'Opale, Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, MREI2, 189A avenue Maurice Schumann, 59140 Dunkerque, France ²School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing, China

The 3-methylcatechol molecule (3MC)

- 3MC is present in the atmosphere during biomass burning events.
- 3MC has three large amplitude motions: the two torsions τ_1 , τ_2 of the hydroxyl groups and the internal rotation τ_3 of the methyl group.

Figure 1: The 3MC molecule with $\tau_1 = D(H10 - O5 - C1 - C3) = 20^{\circ}, \tau_2 =$ $D(H12 - O7 - C3 - C6) = 70^{\circ} \text{ and } \tau_3 = 30^{\circ}.$

- 3MC has been recently studied by Hazrah *et al.* [1]
- The electronic energy $V(\tau_1, \tau_2, \tau_3)$ is 2π -periodic in τ_1 , τ_2 and $\frac{2\pi}{3}$ -periodic in τ_3

FTMW spectroscopy

Figure 3: Spectrometer at the CQU.

- Coaxially oriented beam-resonator arrangement (COBRA) pulsed jet Fouriertransform microwave (PJ-FTMW) spectrometer (covering 2-20 GHz) at Chongqing university.
- Due to the instrumental Doppler effect, each rotational transition appears as a doublet.
- Additionally, the rotational transitions displayed a doublet due to the methyl internal rotation.

Figure 4: Recorded $4_{04} \leftarrow 3_{03}$ rotational transition of rotamer 1 and 2 exhibiting splittings (A/E) arising from the methyl internal rotation. Each component line exhibits the instrumental Doppler doubling.

References

[1] A. S. Hazrah, M. H. Al-Jabiri, and W. Jäger. Structure and conformations of 3methylcatechol: A rotational spectroscopic and theoretical study. J. Mol. Spectrosc., 390:111715, 2022.

Three-dimensional potential energy surface

D3(BJ) functional and the aug-cc-pVDZ atomic orbital basis set has only three minima. Rotamer 1 Rotamer 2

Figure 2: The three stable rotamers of 3MC and their relative energies with the B3LYP-D3(BJ) functional (including zero-point energy) and the aug-cc-pVTZ atomic orbital basis set.

Room temperature mm-wave spectroscopy

9175.4

Figure 6: Experimental and simulated mm-wave spectra of 3MC.

The three-dimensional potential energy surface $V(\tau_1, \tau_2, \tau_3)$ with the B3LYP-

Table 1: V_3 and V_6 parameters of the fits of the one-dimensional scan of the torsional potential from quantum chemical calculations.

Conformer	B3LYP-D3(BJ)		MP2	
	V_3/cm^{-1}	$(V_3, V_6) /\mathrm{cm}^{-1}$	V_3/cm^{-1}	$(V_3, V_6) /\mathrm{cm}^{-1}$
1	290.6	(293.0, -3.6)	308.7	(313.8, -7.7)
2	471.1	(485.0, -20.8)	545.4	(563.5, -27.2)
3	538.9	(553.6, -22.0)	WIP	WIP

Experimental spectroscopic parameters

Table 2: The experimental spectroscopic parameters of							
tained with XIAM. Standard errors are indicated in unit							
least significant digits of the value of the constant.							
	N // X X /	Rotamer I					
	MW	global					
A/MHZ	2308.70897(27)	2308.70885(22)					
B/MHZ	1806.48978(29)	1806.48963(22)					
C/MHz	1020.11684(15)	1020.116685(85)					
Δ_J /kHz	0.0567(34)	0.0531(12)					
δ_j / \mathbf{kHz}	-0.0293(19)	-0.02758(97)					
δ_k /kHz		-0.00699(39)					
V_3 /cm ⁻¹	301.763(27)	301.764(26)					
$D_{pi2J} / {f kHz}$	-12.1(20)	-12.2(19)					
D_{pi2-} / ${f kHz}$	-31.6(23)	-31.7(22)					
δ /rad	0.47880(70)	0.47878(68)					
$N_t/N_{line}{}^{oldsymbol{a}}$	178/178	MW:178/178 mm-wave: 159/69					
RMS/kHz	4.4	132					
J_{max}	5	38					
$K_{a,max}$	4	12					
$ \mu_a $, $ \mu_b $, $ \mu_c $ /D	S	strong, weak, none					
	Rotamer 2						
	MW	global					
A/MHz	2306.98276(41)	2306.98278(23)					
B/MHz	1803.02104(36)	1803.02140(14)					
C/MHz	1018.80940(20)	1018.809197(55)					
Δ_J / kHz	0.0503(47)	0.05486(62)					
δ_i / kHz	-0.0212(29)	-0.02901(49)					
δ_k /kHz		-0.00771(21)					
V_3 /cm ⁻¹	537.7(15)	538.5(10)					
D_{pi2J} /kHz							
D_{mi2-}/kHz							
δ /rad	0.492(17)	0.486(11)					
N_t/N_{line}	66/66	MW:66/66 mm-wave: 512/126					
RMS/kHz	2.9	147					
J_{max}	6	51					
Kamar	3	13					
$ \mu_a , \mu_b , \mu_c / D$ strong, weak, none							
^a Number of transitions/lines in the fit.							

τ₃ / dearee

Figure 7: One-dimensional torsional potential as a function of the torsional coordinate τ_3 (B3LYP-D3(BJ), aug-cc-pVTZ atomic orbital basis set).

> 3MC obits of the