Mercury thiogermanate HgS-GeS₂ glasses: macroscopic, electric, and structural properties

M. Kassem, R. Zaiter, M. Bokova and E. Bychkov

Université du Littoral Cote d'Opale, LPCA, EA 4493, F-59140 Dunkerque, France

I. Introduction

ate

2.0

 \checkmark The reduced connectivity in the glasses seems to be responsible for T_g decease In GeyS1-y, excessive sulphur species form S-S dimers and/or S oligomeric chains replacing bridging sulphur in CS-Ge₂S₇ tetrahedral \Rightarrow reduced network connectivity

0.0

✓ $GeS_2 \Rightarrow$ different Ge–S stretching modes : $GeS_{4/2}$, ES-Ge₂S₆, CS-Ge₂S₇ Change is spectral shape of $GeS_2 \Rightarrow$ evidenced by negative amplitude in difference spectra at ≈ 440 cm⁻¹

✓ Major and minor HgS-related modes at (i) 300-320 and (ii) 400 cm⁻¹ Red shift of the major mode from 320 to 300 cm⁻¹ \Rightarrow agglomeration of $(HgS_{2/2})_n$ fragments (increase of chain fragments *n* per GeS_{4/2} units) Both modes are blue shifted with respect to α -HgS E-modes at 290 & 354 cm⁻¹ \Rightarrow related to *Hg-S chain/Ge-S tetrahedral motifs*

VI. Conclusion

✓ The glass-forming region accounts up to 50 mol% HgS

✓ $r(Hg_{2F}-S) \approx 2.38 \text{ A}; N(Hg-S) = 2.00$ ✓ $r(Hg_{4F}-S) \approx 2.54 \text{ Å}; N(Hg-S) = 4.00$					0.00 0.05 0.10 0.15 0.20 Hg Atomic Fraction		
HgS fraction	r(Ge-S) (Å)	N _{Ge-S}	r(Hg _{2F} -S) (Å)	N ^{2F} _{Hg-S}	r(Hg _{4F} -S) (Å)	N ^{4F} _{Hg-S}	
0.0	2.23(1)	4.01					
0.1	2.22(1)	4.00	2.32(1)	1.65	2.42(1)	0.70	
0.2	2.21(1)	4.00	2.30(1)	1.47	2.39(1)	1.07	
0.3	2.21(1)	4.01	2.29(1)	1.42	2.40(1)	1.16	
0.4	2.20(1)	3.99	2.29(1)	1.32	2.39(1)	1.37	
0.5	2.18(1)	3.99	2.28(1)	1.14	2.39(1)	1.74	
✓ The Hg-S chains coexist with $\text{GeS}_{4/2}$ tetrahedral ⇒ intact local and IRO in the g-GeS ₂ ✓ $f_{\text{Hg}}^{4\text{F}}$ fraction increases with HgS content reaching $f_{\text{Hg}}^{4\text{F}} \approx 0.44$ for the <i>x</i> = 0.5 composition ✓ The majority of mercury species is 2-fold coordinated ⇒ the hybrid chain/tetrahedral							

- $\checkmark T_q$ decrease is consistent with the gradual substitution of more rigid $GeS_{4/2}$, ES-Ge₂S₆, CS-Ge₂S₇ motifs by flexible $(HgS_{2/2})_n$ chain fragments
- \checkmark Raman results reveal that the glasses form a hybrid Hg–S chain/Ge-S tetrahedral network evidenced by Hg-S stretching modes at 300 and 400 cm⁻¹
- ✓ Mercury sulphide appears to be dimorphous over the investigated glass composition
- \checkmark The population of 4-fold coordinated HgS_{4/4} minorities increases with *x*, but remain below 50%, i.e., $f_{Hg}^{4F} \approx 0.44$ for the x = 0.5 composition
- ✓ Further studies of High-temperature HgS-GeS₂ liquids will give a detailed and definitive answer